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Abstract 

This paper presents necessary and sufficient conditions for a multi- 

attributed utility function to be either multiplicative or additive. It is shown 

that the additive form is a limiting case of the multiplicative form. The 

number of requisite assumptions to imply the main result is equal to the 

number of attributes. Because the assumptions involve only trade-offs 

between two attributes at a time or lotteries over one attribute, it is 

reasonable to expect that decision makers can ascertain if the assumptions 

are appropriate for their specific problem. Procedures are given for 

verifying the assumptions and assessing the resulting utility functions. 

The paper concludes with a discussion of a recent application of the results 

to a six-attribute problem relating to the development of Mexico City's 

airport facilities. 
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1. INTRODUCTION 

Most complex problems involve multiple objectives. Thus, analytical 

work on such problems requires that one obtain an objective function involv¬ 

ing multiple measures of effectiveness (attributes) which indicate the degree 

to which these objectives are met. Such an objective function specifies a 

preference ranking of consequences and allows one to identify the trade-offs 

between various levels of the different attributes. In a risk-free environ¬ 

ment, one should choose the alternative course of action which maximizes 

(or minimizes) the objective function. 

However, most real decision problems involve uncertainties--and 

these uncertainties need to be either formally or informally considered in 

analyzing a problem. If one chooses to do this formally, it is necessary to 

specify an objective function with special characteristics in order to make 

the analytics for solving the problem tractable. For this reason, it would 

be nice to be able to use the expected value of the objective function as a 

guide to identify the best alternatives. This is appropriate given one accepts 

f 1 7l 
the axiom's of utility theory specified by von Neumann and Morgenstern1 J 

and the objective function is a utility function. The utility function still pro¬ 

vides one with the necessary information to rank consequences and identify 

trade-offs between attributes, but it also follows from the aforementioned 

axioms that one should choose the alternative that maximizes the expected 

utility. 

The utility concept is theoretically sound, and the mathematical 

details are not involved. However, the difficulty comes when one tries to 
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specify reasonable procedures for obtaining multiattributed utility functions. 

The general approach followed by many people has been to make assump¬ 

tions about preferences and then derive the functional form(s) of the utility 

function satisfying these assumptions. For a real problem, if the assump¬ 

tions are verified, the functional form can be used to simplify the requisite 

assessments needed to specify the utility function. Often these assumptions 

are so involved that it is unreasonable to expect a decision maker to ascer¬ 

tain whether or not they might be appropriate for a specific problem. 

In this paper we state necessary and sufficient conditions to imply 

that a multiattributed utility function is either multiplicative or additive. 

The number of conditions required increase linearly with the number of 

these attributes. None of the conditions require the decision maker to 

consider trade-offs between more than two attributes simultaneously or to 

consider lotteries over more than one attribute. Furthermore, subject to 

the assumptions, the assessments needed to completely specify the 

n-attribute utility function are n one-attribute utility functions and n scaling 

constants . 

In Section 2, after defining the necessary notation, we state the 

main result, which is proven in the appendix. The manner in which one 

would assess the multiplicative or additive utility function is discussed in 

Section 3. Sections 4 and 5 present related results of others and outline 

the use of our result in one real-world decision problem. 
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2. THE MAIN RESULT 

.th 

Let X = X X X X . . . X X be a consequence space , where X. is the 
i £ n j 

i'“ attribute. A specific consequence will be designated by x or 

(Xl,x2,... *xn) • We are interested in assessing the utility function over X, 

which will be denoted by u(x ,x_ , . . . ,x ) or u(x). Finally, Xtt will mean 
12 n - 7 ij 

X x . , , x X. x X. x . . . 
1 i-l i+l 

XX. x X. x • • • XX and xr: will be a 
J-l J+l n ij 

member of Xtt . Similarly, the notation Xr s X x .. . x x xx x ... x X 
1J i 1 i-l i+l n' 

and xr is a member of Xr . In all that follows, each X. may be a scalar 
1 i i 

attribute (i.e., take on scalar values) or a cartesian product of scalar 

attributes. 

The Basic Assumptions 

The main assumptions which we use concern the concepts preferential 

independence and utility independence. We will say X. x X. is preferentially 

independent of Xtt if one’s preference order for consequences (x. ,x.,x.r), with 
^ * J U 

xrr held fixed does not depend on the fixed amount xrr . This is equivalent 
J ij 

to assuming trade-offs under certainty be*ween various amounts of X. and 

Xj do not depend on Xtt . The preferential independence assumption implies 

that the indifference curves over X^ x x^ are the same regardless of the 

value of Xtt . 
ij 

In a similar fashion, we say X. is utility independent of Xr if one's 

preference order over lotteries on X., written (x. ,xr), with Xr held fixed does 
i ii i 

not depend on the fixed amount xr . This implies the conditional utility 
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function over X., given Xy is fixed at any value, will be a positive linear 

transformation of the conditional utility function over X., given X— is fixed 

at any other value. 

With these ideas, we can state our main result. 

THEOREM 1. Let X = X x X x«*«xx,n=5,3. If for some X., X x X is 
12 n i i j 

preferentially independent of Xt^ for all j £ i and X^ is utility independent of 

Xy , then either 

n 
V 

u(x) = ; k u (x ), 
— r r r 

r=l 

(1) 

or 

1 + k u(x) = II [ 1 + k k u (x )], 
— , r r r 

r= 1 
(2) 

where u and the u are utility functions scaled from zero to one, the k are 
r r 

scaling constants with 0 < k^ < 1, and k > -1 is a scaling constant. 

Equation (1) is the additive utility function. When k is positive in 

(2), then u;ii(x) = 1 + k u(x) and u* (x ) = 1 + k k u (x ) are utility functions 
— r r r r r 

over the appropriate domains and 0 < k < 1, and k > -1 is a scaling constant 

u*(x) = n u* (x ) . 
- . r r 

r- 1 

When k is negative, note that u*(x) = -[ku(x) + ll and u* (x ) 
r r 

are utility functions over X and X^f respectively so 

-[ 1 + k k u (x )] 
r r r 

x 
- »■»—in 



-u*(x) = (-d n u*(x ). 
“ , r r 

r= 1 

Hence we can refer to form (2) as a multiplicative utility function. 

The proof of Theorem 1 requires the following three results: 

Lemma 1. If X. is utility independent of X- and if 
1 i 

X. x is preferentially independent of 

Xtj , then X. x is utility independent of 

X- 
1J 

Lemma 2. If X x x is utility independent of X— and 
J U 

X x x are utility independent of X— , 
1 K ik 

then ^ x x Xk is utility independent of 

X— . 
ijk 

Lemma 3. If X“ is utility independent of X , for n-1 
1 i 

of the i - 1,2, # . . , n, and n 3, then 

either equation (1) or (2) is valid. 

The detailed proofs of these results are found in the appendix. 

Proof of Theorem 1 

The proof is different for the case when n > 4 and the case where 

n ~ 3 ■ when n > 4, given the assumptions stated in the theorem, it follows 

from Lemma 1 that X. x X. is utility independent of X- for all j . Lemma 2 

says that when overlapping sets of attributes are utility independent 
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of their complementary sets, their union is utility independent of its com¬ 

plement. Thus, by repeated use of Lemma 2, we can conclude that Xy- is 

utility independent of X. for all j ^ i. The final result then follows directly 

from Lemma 3 . 

In the case where n = 3, the proof of Theorem 1 follows directly from 

invoking Lemmas 1 and 3. 

For the case of two attributes, since the preferential independence 

assumptions do not apply, our theorem is not appropriate. In this case, it 

is proven in Keeney^^ that the utility function is either additive or multipli¬ 

cative, corresponding to (1) and (2), if and only if X^ is utility independent of 

X and X is utility independent of X . 
Câ Cd X 

Given the conditions of Theorem 1 hold, it is important to know 

whether the utility function is additive or multiplicative. With regards to 

this, we state without proof the following 0 

COROLLARY. Suppose the requisite assumptions of Theorem 1 obtain. 

In addition, if for ary one xr. , we can find two different amounts of X., call 
1 

them X. and x! , and two different amounts of X., call them x. and x[ , such 
il J J J 

that the decision maker is indifferent between a lottery yielding either 

(x. ,x.,xt-.) or (x!,x!,xr: ) with equal probability or a lottery yielding either 
i J ij i J iJ 

(x. ,x! ,X7j) or (x!,Xj,X7-j) with equal probability, then the utility function must 

be additive. If he has a preference between the two lotteries, then the utility 

function will be multiplicative. 
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If the indifference or preference condition for the lotteries holds for 

one xr. > it can be shown to hold for all xr. because X, x X. is utility indepen 
ij 1 J 

dent of X— . Thus, it is not necessary to worry about the value of xr. in 

ascertaining whether the assumption is appropriate. 

This corollary indicates that the additive utility function can be con¬ 

sidered as a limiting case of the more general multiplicative utility function. 

3. ASSESSING THE UTILITY FUNCTION 

One important fact about Theorem 1 is that it is operational. All of 

the assumptions are meaningful to decision makers and it is possible, with 

a reasonable amount of effort, to ascertain whether they are appropriate for 

a particular problem. Furthermore, if they do hold, the amount of informa¬ 

tion needed from the decision maker to specify the utility function is 

manageable--it only increases linearly with the number of attributes. 

Verifying the Assumption 

One of the first steps in assessing the utility function is to verify the 

requisite assumptions. To check whether X. x X^ is preferentially indepen¬ 

dent of X— , we might nroceed as follows. First choose an xr. with all the 
U * U 

components at a relatively undesirable level and find an (x. ,x.) and (x!,x!) 
^ J ^ J 

such that (x. ,x.,xr.) is indifferent to (x!,x!,xr.). Then pick another point 
i J U i J U 

x'jj with all components at a relatively desirable level and ask the decision 

maker if (x. »x^x’—) is indifferent to (x! ,xl »x't.) . This must be true if 
1 J U 1 J 13 

X. x X. is preferentially independent of Xt. . If the decision maker's answer 
i J U 

was affirmative, repeat the same p¿ ocedure for other pairs of points in the 

r-Í: ' 1 ih: - ~ i!ii j 
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X. X Xj plane with X— fixed at varying levels. If the answers to these ques¬ 

tions still indicate preferential independence, then ask if the decision maker 

is indifferent between (x. ,x. ,xt: ) and (x!,x!, xn) for any xr., does this imply 
1 J 1 J IJ 1J r 

the same indifference would hold for any value of xr: . A positive answer 

implies X^ x is preferentially independent of Xt: . 

An obvious way to check whether X. is utility independent of Xr is to 

assess conditional utility functions over X^ given different amounts of Xr . 

If they are positive linear transformations of each other, the utility independ¬ 

ence assumption would be appropriate. More specifically, one could assess 

certainty equivalents x^ such that (x^,xr) is indifferent to a lottery yielding 

either (x|,xr) or (xlhxr) with equal probability. If the certainty equivalent 

for any lottery did not depend on the amount xr, then X^, would be utility in¬ 

dependent of Xr. In practice, if such a condition held for three or four 

fifty-fifty lotteries covering the range of X^ for approximately four different 

values of xr covering the range of Xr , one would usually be justified to 

assume is utility independent of X— . 

The Necessary Information 

To use either the additive form (1) or the multiplicative form (2), we 

need to obtain exactly the same information. To completely specify the n 

attribute utility function, u(x, ,x_, . . . ,x ) we can assess the n single attribute 
l ¿ n 

utility functions u.(x^) on zero to one scales and the n scaling constants k. . 



12 

n 

Given2 k. = 1, then the additive utility function is appropriate. If 

i=l 

n 

X) ki ^ 1# the utility function is multiplicati 

i=l 
ve and the additional constant 

k in (2) can be found from the k. values. Thus, as mentioned earlier the 

additive utility function can be thought of as a special case of the multiplica¬ 

tive utility function. 

Suppose we define x° and x|= to be the least and most desirable amounts 

of attribute X.. Then, the utility function u.fx.), which can be assessed using 

the standard technique discussed in Schlaifer/15J must be scaled such that 

and 

U.(x. ) = 0 
i i 

u-fx?) = 1, 

(3) 

(4) 

in order to satisfy the scaling convention of Theorem 1 

Evaluating the Scaling Constants 

By solving either (1) or (2) for u(x°, . .. ,x° ,x* x° v° > 
1 i-l i’ i+1’•••» xn i * we 

find 

u(x?,x^) su(Xj»...,x° 1,x?=,x°+1,...,x“) = k. . {5) 

Thus to assess k., we can ask the decision maker for a probability p. such 

that he is indifferent between (x* x“) for certain and a lottery yielding either 

X* with probability p. or x° with probability d-p ). Since as noted in Theorem 

1 

1 we set 



13. 

. o. . o o °. Ä 
u(x ) = u(x ,X , . . . ,x ) = O 

— 12 n 

and 

u(x*) = uíx^.x*, . . . ,x*) = 1, 
“ 12 n 

(6) 

(7) 

it follows that 

u(xf,xr ) = p., (8) 

and k. = P^» There are more sophisticated ways to assess the scaling con- 

[141 
stants such as those discussed in Raiffa. J 

Evaluating Constant k 

When the multiplicative form is appropriate, we must determine 

parameter k. In this case, we can evaulate (2) at x* to find 

n 
1 + k = R (1 + k k.). 

i=l 1 
(9) 

n 

As mentioned earlier, if k. = 1, the utility function is additive. 

i=l 

n 

If k^ > 1, then using (2) and (9), it can be shown that the properties of 

i= 1 

utility functions can only be preserved given that -1 < k < 0. In this case, 

by interatively evaluating (9) given the k., one can converge to the appropriate 

value of k, call it k . First set k = k and substitute this into (9). If the 
L S 

right hand side is smaller than the left hand side, then k < k . 
t s 

is greater than the l.h. s ., then k >k . 
t s 

If the r .h. s. 
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n 

When V k. < 1, it follows that from similar reasoning that k > 0. 
1 L 

i=l 

Let us arbitrarily set k = k in (9). If the r.h.s. > l.h.s., then k > k , 
s t s 

whereas if the l.h.s . > r.h.s., then k < k . 
t s 

4. RELATED RESULTS 

Many others have worked on problems related to obtaining multi- 

attributed utility functions. In this section, we will briefly summarize some 

of the results closely related to those discussed here. A more comprehen- 

[6] 
sive survey is found in Fishburn. 

[3 4 5] 
In a series of papers, Fishburn1 * ' J has derived necessary and 

sufficient conditions for multiattributed utility functions to be additive. His 

conditions require that the desirability of any lottery over X only depend on 

the marginal probability distributions over the and not on the joint prob¬ 

ability distribution. 

[IS] [12] 
Poliak1 J and Meyer1 J both derive necessary and sufficient condi¬ 

tions for an n attribute utility function to be additive or multiplicative. Thus, 

their assumptions are equivalent to the conditions specified in Theorem 1. 

However, their assumptions are much stronger than ours, and because they 

concern utility independence conditions with several attributes varying simul¬ 

taneously, they are much more difficult to verify. Since these results are 

directly related to mine, let us state them. 

THEOREM 2. (Poliak). If Xt* is utility independent of X^, for all i, i ^ 2, 

the utility function u(x) is additive or log additive (i.e., multiplicative). 

i 
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To be precise, Poliak does not assume utility independence conditions, 

but rather he assumes his "weak independence axiom" which is equivalent to 

the conditions stated. This axiom states an individual's preferences between 

any fifty-fifty lottery yielding either (x^x'-) or (x.,x"t-) or a consequence 

(x.#xn,7-) should be independent of the amount x. for all lotteries, for all 

x1"^, and for all choices of i. 

To prove Meyer's result, we need to define 

m 
X — X XX _x...xxjm<n and X = X xx x .,. x x 

n 12 m ' m m+1 

THEOREM 3. (Meyer). If Xm is utility independent of ~~ ‘X, for all 

H 1 
m = 2,3, ... ,n and if X is utility independent of X , then u(x) is either 

n 

multiplicative or additive . 

Proofs o*. these theorems are found in their respective references. 

Note that both require n assumptions, as does Theorem 1. However, both 

sets of assumptions in this section require the decision maker to express 

cardinal preferences (i.e., preferences over lotteries) with from two to 

n-1 attributes varying at the same time. The conditions of Theorem 1 

require only ordinal preferences (i.e., preferences over consequences) with 

two attributes varying and one set of cardinal preferences over one attribute. 

A number of related results which follows from various sets of utility 

independence assumptions are found in Raiffa^14^ and Keeney J8,10^ 

Papers considering the implications of preferential independence include 

Debreu,^ Gorman/^ Raiffa/14^ and Ting/*^ 

m-1 
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5. AN EXAMPLE 

Recently, the results of this paper were used on a study to select a 

strategy for developing the airport facilities of Mexico City for the rest of 

the century. Details of the overall study can be found in de Neufville and 

[2] 
Keeney. A part of the study involved assessing a utility function over six 

attributes useful for indicating the effectiveness of various developmental 

strategies. The attributes were 

Xj = total cost in millions of pesos; 

= the practical capacity in terms of the number of 
aircraft operations per hour; 

X^ = access time to and from the airport in minutes; 

X^ = the number of people seriously injured or killed 
per aircraft accident; 

X^ = the number of people displaced by airport develop¬ 
ment; and 

X^ = the number of people subjected to a high noise level 

(measured by an index combining decibel level and 
frequency of occurrences). 

Rather than repeat specifics of the assessment procedure found elsewhere 

let me say that the conditions of Theorem 1 were verified with the Director 

of the Department of Airports in the Ministry of Public Works, as well as 

independently with his assistants. The Department of Airports has the 

responsibility for building and maintaining all airports in Mexico. Then the 

conditional utility functions u^(x^) and the scaling constants k. were assessed. 

We found that the utility function was multiplicative. This utility function was 

[11] 

\ 
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used for evaluating the effectiveness of the proposed strategies for develop¬ 

ing the Mexico City airport facilities. 

6. CONCLUSIONS 

This paper presents a set of necessary and sufficient assumptions to 

imply that a multiattributed utility function is either multiplicative or additive 

It is shown that the additive utility function can be considered as a limiting 

caáe of the multiplicative utility function. Our assumptions are operational- 

that is, it is reasonable to expect that by questioning a decision maker, one 

would be able to ascertain whether or not the assumptions hold for his 

particular problem. The questions which would be appropriate to verify the 

assumptions are discussed. Finally, an example is mentioned where the 

main result was used to structure a utility function over six attributes in a 

real-world problem. 
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Appendix 

/ 

In this appendix, details of the proofs of the three lemmas stated in 

Section 2 are given. 

The notation used in proving the first two lemmas will be altered 

slightly from that in the main text in order to avoid subscripts where neces¬ 

sary and to simplify expressions. We will use S,T,Y, and Z as attributes 

rather than X.,X_.,X- , etc. Thus, for instance s will be a specific amount 

of S. Furthermore, since we will always use the utility function u(x), which 

will now be written u(s,t, . . .,z), when an attribute is at its least desirable 

amount, designated as s for example, we may delete it in the function when 

no ambiguity will result. Thus, rather than write u(s°, t0,y, z), u(s0,t0,y°, z), 

and b(t°, z), we will use u(y,x), u(z), and b(z). 

Lemma 1. If X. is utility independent of X- and if 
1 i 

Xi X Xi is Preferentially independent of 

X~ , then X. x X^ is utility independent 

of Xr. . 

Proof. Let S s X , T ~ X , and Y = X— . Therefore X— = X x X— = T x y 
1 J lJ i j ij 

We can mathematically represent the condition that S is utility independent 

of T x y as 

u(s,t,y) = u(t,y) + b(t,y) u(s). 
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Alsb, since S x T is preferentially independent of Y, we know 

u(s,t,y°) = u(s+,t+,y°) —♦ u(s,t,y) = u(s+,t+>y), Vy. 

Let us choose s' such that 

u(s,t,y°) = u(s1,t°,y°), 

Then, substituting (A-l) into (A-3) yields 

u(t) + b(t) u(s) = u(s') 

since setting t = t° and y = y° in (A-l) indicates 

b(t°, y°) = 1. 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

From (A-3) and the preferential independence assumption, 

u(s,t,y) = u(s',t°fy), V y. (A 6) 

Evaluating both sides of (A-6) with (A-l) and combining the results with 

(A-4), we find 

u(t,y) + b(t,y) u(s) = u(y) + b(y) [u(t) + b(t) u(s)J. 

If we set s = s° in (A-7), 

u(t,y) = u(y) + b(y) u(t), 

which can be substituted back into (A- ï) to yield 

b(t,y) = b(t) b(y). 

Now, substituting (A-8) and (A-9) into (A-l) gives us 

u(s ,t,y) = u(y) + b(y) u(t) + b(t) b(y) u(s) 

= u(y) + b(y) [u(t) + b(t) u(s)] 

= u(y) + b(y) u(s,t). 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

Equation (A-10) says S x T is utility independent of Y which is the desired 

result. 
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Lemma 2 is now proven for n > 4, since it does not apply in the 

case when n = 3 . 

Lemma 2. If X x x. is utility independent of X— and 
J ij 

Xi X are utilitY independent of X— , 
1 K ik 

then X. x Xj x X^ is utility independent of 

X— . 
ijk 

Pi-OQf of Lemma 2 . (n > 4). .LetSsX., T=X.. Y = X , and Z s X— 
• 1 J K ijk * 

given utility independence conditions imply 

u(s,t,y|Z) = u(y, z) + a(y, z) u(sft) 

and 

u(s,t,y,z) = u(t,z) + b(t,z) u(s, y). 

Substituting (A-11) into (A-12) and then) A.- 12) into (A-ll) gives us 

u(s,t,y,z) = u(z) + b(z) u(y) + a(y,z) [u(t) + b(t) u(s)] 

and 

u(s,t,y,z) = u(z) + a(z) u(t) + b(t,z) [u(y) a(y) u(s)] 

which can be equated with t = to to yield 

a(y,z) = b(z) a(y). 

Then, substituting (A-14) back into (A-13) gives 

u(s , t, y, z) = u(z) + b(z) [u(y) + a(y) u(s,t)] 

= u(z) + b(z) u(s,t,y) 

which proves Lemma 2. 

The 

(A-ll) 

(A- 12) 

(A- 1 3) 

(A-14) 

(A- 15) 
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If X“ is utility independent of X for 
1 i 

n - 1 of the i= 1,2, ..., n, and n ^ 3, 

then either (1) or (2) is valid. 

Proof. With no loss of generality, we will assume Xr is utility independent 

of X. for i=r 1,2,..,,0-1 which implies 

U(x) = u(x.) + c.fx.lufxr). i = 1,2.n-1. (A.l6) 

Setting all x. = x° except Xj and x., j = 2, 3.n-1, we get the equality 

UlXj.Xj) r uiXj) + CjÍXj) u(x ) = u(x.) + c.(x.) u(x ) 
J J J J 1 

or 

cilxi' _ VVj1 
u(x.) 

J 

Thus, it follows that 

u(x "* J 2,3, . , . ,n-l. (A-17) 

C.(x.) = k u(x.) + 1, for all i = 1,2,...,n-1. 

We can repeatedly use (A-16) to obtain 

u(x) =u(Xl)+ c j (x t ) u(x2,x3, ...,xn) 

= ulXj) + CjfXj) [u(x2) + c2(x2) u(x3,x4> . . . ,xn)l 

(A- 18) 

- UÍXj) + c^Xj) u(x2) + c^Xj) c2(x2) u(x3) +...+ (A-19) 
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Substituting (A-18) into (A-19) yields 

u(x) = uiXj) *1* fkuiXj) + 1] u(x2) -I- [ku(Xj) *f 1] [kufx^) + 1] u(x3> + ... 

+ [ku(x ) + l] [ku(x0) + 1] . . . [ku(x J+l] u(x ). (A-20) 
1 u n -1 n 

When k = 0, (A-16) becomes the additive utility function 

n 

u(x) u(x.) . (A-21) 

i=l 

When k £ 0, we can multiply both sides of (A-20) by k, then add 1 to each, 

and rearrange terms to find 

n 
ku(x) + 1 = n [ku(x. ) + 1] . 

i=l 1 

Recall that u(x. ) actually means u(x^, x^, . . .,x., x° ,, . . ., x° ). Since we 
i 12 ii+l n 

define u(x.) = k,u.(x.) so the u.(x.) can be scaled from zero to one, (A-21) 
i ill ii 

and (A-22) become respectively 

(A-22) 

u(x) = 

n 

y k.u.(x ) 
Lj ill 

i= 1 

n 
ku(x) + 1 = II [kk.u.(x.) + 1], 

i=l 

which proves Lemma 3. 

(2) 
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